Displaying items by tag: FibreNumberland engineering consultancy for new processes, new materials. New processes: We analyse, optimize and document processes often not covered by quality management handbooks and teach them to run. We translate technical demands into physical effects or properties and then find the suitable material.http://www.numberland.de/index.php/component/k2/itemlist/tag/Fibre2016-09-26T19:24:24+02:00Joomla! - Open Source Content ManagementPolymers for high temperatures2015-10-27T22:11:41+01:002015-10-27T22:11:41+01:00http://www.numberland.de/index.php/get-in-contact/item/1511-polymers-for-high-temperaturesAdministratorgrond@numberland.de<div class="K2FeedImage"><img src="http://www.numberland.de/media/k2/items/cache/31ab80c5b515a43125d7d477a8d33d70_S.jpg" alt="Polymers for high temperatures" /></div><div class="K2FeedIntroText"><h1><span style="display: inline; float: none; position: static; font-size: 14px; font-weight: bold; font-family: Tahoma,Arial,sans-serif; font-size-adjust: none; font-style: normal; font-variant: normal; line-height: 14.3px; text-align: left; text-decoration: none; text-indent: 0px; text-shadow: none; text-transform: none; word-spacing: normal;">Polymers for high temperatures</span></h1> </div><div class="K2FeedFullText"> <p>ID: F1510-07</p> <p>Many commercial and commercial programs require the use of elements that withstand very high conditions. Metals and ceramics have actually mostly filled this need with matrix composites capable of withstanding up to a number of thousand degrees Celsius. High-temperature polymeric composites would allow programs to take advantage of their lighter fat, much better exhaustion properties and ductility. Such materials could have significant effect on the weight and subsequent fuel usage and emissions associated with air transportation. A brand new task expects to deliver durable polymers and composites together using the required large-scale production technologies. The materials and procedures will probably be key enablers for development of tomorrow's eco-friendly aero engines and, in particular, turbofan engines. Scientists have concentrated on development of a cost-effective organic matrix resin that performs at 360 levels Celsius and can be effectively processed into carbon fibre-reinforced organic matrix composite components. Now at its midpoint, the project has almost reached that goal. The team developed a brand new polymeric resin system with demonstrated thermal security under the target conditions. More, the considerable characterisation confirms that the materials should be well-suited to the selected composites manufacturing procedures. During the second and last year, scientists plan to demonstrate the high-temperature polymer composites and related production technologies required to support the EU's objectives for lightweight and eco-friendly aircraft.</p> <p><a href="mailto:getincontact@numberland.com?subject=Get%20in%20Contact">getincontact@numberland.com</a></p> <p>&nbsp;</p></div><div class="K2FeedTags"><ul><li>Polymer</li><li>High</li><li>Temperature</li><li>Carbon</li><li>Fibre</li><ul></div><div class="K2FeedImage"><img src="http://www.numberland.de/media/k2/items/cache/31ab80c5b515a43125d7d477a8d33d70_S.jpg" alt="Polymers for high temperatures" /></div><div class="K2FeedIntroText"><h1><span style="display: inline; float: none; position: static; font-size: 14px; font-weight: bold; font-family: Tahoma,Arial,sans-serif; font-size-adjust: none; font-style: normal; font-variant: normal; line-height: 14.3px; text-align: left; text-decoration: none; text-indent: 0px; text-shadow: none; text-transform: none; word-spacing: normal;">Polymers for high temperatures</span></h1> </div><div class="K2FeedFullText"> <p>ID: F1510-07</p> <p>Many commercial and commercial programs require the use of elements that withstand very high conditions. Metals and ceramics have actually mostly filled this need with matrix composites capable of withstanding up to a number of thousand degrees Celsius. High-temperature polymeric composites would allow programs to take advantage of their lighter fat, much better exhaustion properties and ductility. Such materials could have significant effect on the weight and subsequent fuel usage and emissions associated with air transportation. A brand new task expects to deliver durable polymers and composites together using the required large-scale production technologies. The materials and procedures will probably be key enablers for development of tomorrow's eco-friendly aero engines and, in particular, turbofan engines. Scientists have concentrated on development of a cost-effective organic matrix resin that performs at 360 levels Celsius and can be effectively processed into carbon fibre-reinforced organic matrix composite components. Now at its midpoint, the project has almost reached that goal. The team developed a brand new polymeric resin system with demonstrated thermal security under the target conditions. More, the considerable characterisation confirms that the materials should be well-suited to the selected composites manufacturing procedures. During the second and last year, scientists plan to demonstrate the high-temperature polymer composites and related production technologies required to support the EU's objectives for lightweight and eco-friendly aircraft.</p> <p><a href="mailto:getincontact@numberland.com?subject=Get%20in%20Contact">getincontact@numberland.com</a></p> <p>&nbsp;</p></div><div class="K2FeedTags"><ul><li>Polymer</li><li>High</li><li>Temperature</li><li>Carbon</li><li>Fibre</li><ul></div>More carbon fibre for cars2015-10-27T22:11:14+01:002015-10-27T22:11:14+01:00http://www.numberland.de/index.php/get-in-contact/item/1506-more-carbon-fibre-for-carsAdministratorgrond@numberland.de<div class="K2FeedImage"><img src="http://www.numberland.de/media/k2/items/cache/095b50b2d3b74bb51d90d91753a1f697_S.jpg" alt="More carbon fibre for cars" /></div><div class="K2FeedIntroText"><h1><span style="display: inline; float: none; position: static; font-size: 14px; font-weight: bold; font-family: Tahoma,Arial,sans-serif; font-size-adjust: none; font-style: normal; font-variant: normal; line-height: 14.3px; text-align: left; text-decoration: none; text-indent: 0px; text-shadow: none; text-transform: none; word-spacing: normal;">More carbon fibre for cars</span></h1> </div><div class="K2FeedFullText"> <p>ID: F1510-02</p> <p>In addition to being lightweight for gas efficiency, high-performance composite materials for the transport sector should have the potential to be used in fast manufacturing procedures. Presently, production volumes tend to be restricted to a few hundred or a few thousand products per year for aerospace or recreations automobile applications. A project changed that by developing two brand new high-volume materials for carbon fibre-reinforced plastic (CFRP) components for vehicles. The first developed system was advanced polyurethane (PU) thermoset matrix materials that showed improved mechanical overall performance and reduced period times whenever compared with the many frequently utilized epoxy matrix. Replacing this traditional matrix system with PU also enabled combining fast curing with high toughness and a large glass change temperature. Addition of nanoparticles in PU allowed further improvements in processing – reduced resin viscosity and effect kinetics – as well as in thermal and electric properties. Consortium partners built demonstrators making use of this brand new material in structural parts of a vehicle. These included the inner bonnet, rear seat back panel, and the B-pillar between the front door and the back home. Another breakthrough was to hybridise self-reinforced composites (SRCs) – polypropylene (PP) and polyamide – with carbon fibres. The task then followed a number of techniques to develop two SRC versions. In the very first instance, a little quantity of carbon fibres permitted SRC stiffness to increase without reducing toughness. In the 2nd instance, bigger quantities resulted in increased toughness, with rigidity remaining large. Reduced production times were accomplished through the thermoforming procedure.<br />The advanced materials produced outcome in quick cycle times, showing unique promise for cost-effective, higher-volume manufacturing of high-performance CFRP parts.</p> <p><a href="mailto:getincontact@numberland.com?subject=Get%20in%20Contact">getincontact@numberland.com</a></p> <p>&nbsp;</p></div><div class="K2FeedTags"><ul><li>Energy</li><li>Carbon</li><li>Fibre</li><li>Car</li><li>Lightweight</li><ul></div><div class="K2FeedImage"><img src="http://www.numberland.de/media/k2/items/cache/095b50b2d3b74bb51d90d91753a1f697_S.jpg" alt="More carbon fibre for cars" /></div><div class="K2FeedIntroText"><h1><span style="display: inline; float: none; position: static; font-size: 14px; font-weight: bold; font-family: Tahoma,Arial,sans-serif; font-size-adjust: none; font-style: normal; font-variant: normal; line-height: 14.3px; text-align: left; text-decoration: none; text-indent: 0px; text-shadow: none; text-transform: none; word-spacing: normal;">More carbon fibre for cars</span></h1> </div><div class="K2FeedFullText"> <p>ID: F1510-02</p> <p>In addition to being lightweight for gas efficiency, high-performance composite materials for the transport sector should have the potential to be used in fast manufacturing procedures. Presently, production volumes tend to be restricted to a few hundred or a few thousand products per year for aerospace or recreations automobile applications. A project changed that by developing two brand new high-volume materials for carbon fibre-reinforced plastic (CFRP) components for vehicles. The first developed system was advanced polyurethane (PU) thermoset matrix materials that showed improved mechanical overall performance and reduced period times whenever compared with the many frequently utilized epoxy matrix. Replacing this traditional matrix system with PU also enabled combining fast curing with high toughness and a large glass change temperature. Addition of nanoparticles in PU allowed further improvements in processing – reduced resin viscosity and effect kinetics – as well as in thermal and electric properties. Consortium partners built demonstrators making use of this brand new material in structural parts of a vehicle. These included the inner bonnet, rear seat back panel, and the B-pillar between the front door and the back home. Another breakthrough was to hybridise self-reinforced composites (SRCs) – polypropylene (PP) and polyamide – with carbon fibres. The task then followed a number of techniques to develop two SRC versions. In the very first instance, a little quantity of carbon fibres permitted SRC stiffness to increase without reducing toughness. In the 2nd instance, bigger quantities resulted in increased toughness, with rigidity remaining large. Reduced production times were accomplished through the thermoforming procedure.<br />The advanced materials produced outcome in quick cycle times, showing unique promise for cost-effective, higher-volume manufacturing of high-performance CFRP parts.</p> <p><a href="mailto:getincontact@numberland.com?subject=Get%20in%20Contact">getincontact@numberland.com</a></p> <p>&nbsp;</p></div><div class="K2FeedTags"><ul><li>Energy</li><li>Carbon</li><li>Fibre</li><li>Car</li><li>Lightweight</li><ul></div>